
LLM Web Application Stack
Requirements Based
Conceptual Architecture

STRATA|AIT

Context & Problem
Developing AI applications requires new systems amid
evolving challenges and costs.

The traditional application stack for a

dynamic website is primarily a database,

an application server, and a cache layer

(for response speed). To create

applications with generative AI and

language models, several new storage

systems and services are required. This

document attempts to clarify what is

needed and why. While this explanation

will peer into how engineering does this,

consider any conceptual component box

in this architecture to be replaceable,

combined, split, etc. as the best

understanding of AI powered apps rapidly

evolves. In other words, this article will self

destruct in 6 months — and many startup

products with it!

Humans want to interact with an AI in

natural language (or voice utterances),

and receive human expert quality

responses on topics requiring a lifetime of

subject matter expertise. The problem is

that language models mostly understand

written language, and don’t have usually

have expertise in topics like anesthesia,

petrochemical research, etc. In 3-6 years

time, a private company might create a

model with all human knowledge

(incalculable trillions of parameters) but

the barriers today are >$10 billion training

cost, slow performance on responses, and

high cost to serve the runtime inference.

There is also public debate on copyright

claims and the legality of derivative

intellectual property, which we won’t

tread into now.

2

What if we do nothing?
Direct LLM interaction shows the need for context to make sense of
inputs.

To understand the problem first hand, see what happens when interacting directly with an LLM

absent any other application layers. Do this by downloading LM Studio for MacOS or Windows,

loading up a compliant model sourced from HuggingFace, and asking it questions on your local

machine. The thread below is a clinical practitioner asking a language model trained on PubMed

(medical publications) for advice on an upcoming surgery:

This is beyond a hallucination, it’s complete gibberish — sentence fragments spit out from

documents it read. The problem is that the LLM needs additional context injected to understand the

question or input prompt. The solution must send the LLM the right context at the right time, so it

can reason about a sensible answer.

3

Contemporary Solution
Direct LLM interaction shows the need for context to make sense of
inputs.

The good news is, software engineers have

enough glue and sticks to connect a researcher

team’s incomplete language model to other

bridge technologies — and deliver business

value today in November 2023. There’s a lot to

unpack here:

Chat UI - User Request

Problem: get engagement from users

This is the now familiar interface of Chat GPT

and other AI assistants. The user types in any

question or thread of questions, and the

application treats this as a single session. Each

previous question is fed to the language model

with the next, clarifying question. Remember

that LLMs have zero data retention at runtime

and each subsequent prompt request travels a

different neural pathway than the previous one.

In other words, LLMs have amnesia from one

input statement to the next.

4

Prompt and Knowledge Handling
Simplifying user queries and enhancing LLM with relevant information

Prompt Translation Layer

Problem: understand the natural language of

the user and translate for machines

At a high level, language models do not like

questions. Think of AI as a statistical computer

that is really good at guessing what comes next.

Instead, it prefers to work with a question

restated as an incomplete sentence — then it

tries to complete it to the user’s satisfaction. This

is the first software component in connecting

user requests to a raw LLM.

Knowledge Retrieval Layer

Problem: quickly find relevant research on the user’s topic

Retrieval Augmented Generation (RAG) is a category of research that has taken concrete form as a

first class service in many AI applications. Imagine you’re working with a 7 billion parameter LLM that

has sparse knowledge of medical research. The constraint is you don’t have the time, talent or money

to create and fine tune a foundation model that is perfectly weighted to respond to healthcare

workers. Instead, we can take a shortcut by searching for information relevant to the question, and

then giving the LLM a hint when we send in the user’s prompt. The hint can actually be >200,000

words long, if you’re willing to pay for the maximum number of input tokens.

5

Data Retrieval Foundations
Classic search tech underpins AI, easier than new LLM development.

Knowledge Retrieval Layer (cont.)

Here we can use two older storage technologies

- knowledge graphs and search indexes. Yes, the

same style search indexes from the 1990s web.

Loading documents into a knowledge graph

and tuning search indexes is hard, but not nearly

as hard as creating a new LLM. Tens of millions

of developers can do the former, where only

tens of thousands effectively can do the latter.

This starts to uncover why some AI talent is so

sought after, and why compensation packages

for these lucky (and talented) pioneers resemble

the first dotcom boom.

Note that this later might, or might not, include a vector database and embedded (numerical)

representations of the documents. LLMs don’t actually know any words, they work with arrays of

numbers and guess the next number. The numbers map to letters and words, and the guessing paths

are all represented as geometric distances. This could be the subject of a future post.

6

Smart LLM Routing
Direct queries to suitable models, balancing cost and user
satisfaction.

Language Model Router

Problem: optimize the system behavior for

accuracy, speed, and cost

Assume we have a contract with a single LLM as

a Service provider, like Anthropic or Azure AI

Studio. These providers offer several choices of

models to send a Prompt request to. If we were

to optimize cost, we might send easy questions

to the cheap model and hard questions to the

expensive model.

This has a material impact on our overall cost to serve the application, as the LLM is typically the most

resource intensive and the highest infrastructure bill by far. This layer can get very thick and very

sophisticated, especially at high scale where it’s possible to perform automated A/B tests and

optimize. The idea is to satisfy the user for the lowest possible cost.

7

Quality Control for AI
Filter and rank LLM responses for quality, safety, and permissions.

Response Ranker

Problem: given non-deterministic responses,

choose the best response of ~3

One brute force workaround for bad LLM

responses is to send the prompt multiple times

up front, and then throw away the ugly looking

guesses. We can apply yet another ranker here

to determine that. In practice, this may just be

an extension of the Search Ranker. Ordering

responses and selecting the best one could

involve double checking the answer in the

knowledge graph.

Guardrails

Problem: perform a safety check and enterprise permissions checks

Guardrails is a term stolen from an open source project that is like a sentinel for AI safety. There are

two forms of this. The first is a societal and ethical filter, like preventing harmful activities and

malicious intents. A good example is a user who wants to know how to create malware to take down

a hospital. The second is a permissions and need-to-know filter, like a 100,000 person corporation

where every employee is not permitted to know everything. These are basically access checks, and

could result in redacted responses or user friendly error messages.

8

AI Response Validation
Users rate AI replies to enhance system precision.

Chat UI - System Response

Problem: get feedback from the user on whether

the system is correct, and why

We’re back to serving the AI’s response to the

user and we want to know if it’s valid. The user

interface should have a way of collecting

feedback, such as thumbs-up/thumbs-down, a

0-5 star ranking, and maybe even follow-up

questions with quick-response input buttons to

clarify why. This information is very important

for tuning the behavior of this system.

Conclusion

It’s flippant to say that the entire crop of AI applications coming on the market are a “thin wrapper

over GPT4”. By that logic, most of Web 2.0 was a “thin wrapper over AWS”. A tremendous amount of

value is being created.

Optimizing the layers of this LLM Web Applications Stack for accuracy, performance and cost is a

very hard computer science problem. Not as hard as making a trillion parameter LLM, but can

provide the same value to your users — today. No miracles required. Just have a lot of discipline in

testing and tuning each layer of this stack, and obsessively measure whether the changes are

improving user engagement, or harming user satisfaction.

9

Authorship

Gregory Wester
Principal
United States
Tel: (415) 806-1572
Gwester@StrataAIT.com

©2023 Strata Companies. All rights reserved. This document is provided
“as-is.” Information and views expressed in this document, including URL

and other Internet website references, may change without notice. You
bear the risk of using it. This document does not provide you with any legal
rights to any intellectual property in any Strata Companies product. You
may copy and use this document for your internal, reference purposes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

